

0040-4020(95)00684-2

NEW XENIA DITERPENOIDS FROM A SOFT CORAL, XENIA SPECIES¹

Tetsuo Iwagawa,**a Yasuhisa Amano,*a Tsunao Hase**a, and Motoo Shiro**b

^aDepartment of Chemistry, Faculty of Science, Kagoshima University, Korimoto, Kagoshima 890, Japan ^bRigaku Corporation, 3-9-12 Matsubara-cho, Tokyo 196, Japan

Abstract: The structures of nine new xenia diterpenoids, xeniatine A (1), xeniatine A epoxide (2), isoxeniatines A (3) and B (4), and xeniaethers A (5) and B (6), together with three methoxyacetals 7-9, from a soft coral *Xenia* species have been elucidated.

The soft corals of the genus *Xenia* have proved to be a rich source of 9-membered macrocyclic diterpenoids named xenia diterpenoids, which have been structurally divided into three groups: xenicins, xeniolides, and xeniaphyllanes.² In the course of our investigations of the constituents of an unidentified *Xenia* species collected in the area of Bonotsu, Kagoshima prefecture, we have isolated four new xeniolides 1-4, two xenia diterpenoids 5 and 6 containing a tetrahydrofuran fused to a 9-membered ring, and three xenia diterpenoids 7-9 possessing a methoxyacetal moiety. In a preliminary communication, we reported the structures of xeniatine A (1) and xeniaether A (5) established on the basis of spectroscopic and single crystal X-ray analyses.³ In this paper, we describe the isolation and structure elucidation of xeniatine A epoxide 2, isoxeniatines A (3) and B (4), xeniaether B (6), and methoxyacetals 7-9.

The soft coral was thoroughly extracted with methanol. The methanol extract was partitioned between methylene chloride and water. Repeated column chromatography of the methylene chloride soluble portion gave a light brown residue containing a mixture of diterpenoids. Further purification of the residue by reversed phase HPLC yielded a series of xenia diterpenoids 1-9. Their molecular formulas were determined by ¹H NMR, ¹³C NMR, and MS spectroscopy.

Xeniatine A epoxide 2 was isolated as an oil. The molecular formula $C_{20}H_{28}O_5$ had one more oxygen than that of 1 and indicated one degree of unsaturation more than 1. Six olefinic carbons [δ 118.0 (t), 122.4 (d), 131.4 (s), 139.6 (d), 142.9 (s), and 149.8 (d)] and one lactone carbonyl [δ 169.9 (s)] in the ¹³C NMR spectrum (Table 1) accounted for four double bond equivalents, suggesting that 2 was tricyclic. The gross structure was assigned by use of the NMR techniques including ¹H-¹H COSY experiments and by comparison of the NMR spectra of 2 with those of 1. Thus, resonances due to following protons were readily assigned: H-1 (δ 3.94; 1H, t, J=10.6 Hz, δ 4.16; 1H, dd, J=3.6 and 10.6 Hz), H-4a (δ 3.75; 1H, m), H-10 (δ 2.84; 1H, dd, J=3.5 and 12.1 Hz, δ 2.97; 1H, t, J=12.1 Hz), H-11a (δ 2.70; 1H, dt, J=3.6 and 10.6 Hz), H-12 (δ 7.08; 1H, dd, J=1.7 and 11.5 Hz), H-13 (δ 6.99; 1H, dd, J=11.5 and 14.8 Hz), H-14 (δ 6.21; 1H, d, J=14.8 Hz), H-16 and H-17 (δ 1.38; 6H, s), H-18 (δ 1.42, 3H, s), and H-19 (δ 5.10; 1H, br s, δ 5.27; 1H, br s). The

major differences of the ¹H NMR spectral data between 2 and 1 were that resonances due to H-8 and H-9 in 2 suggested an epoxide (δ 2.84; 1H, d, J=3.5 Hz, H-8 and δ 3.04; 1H, dt, J=3.5 and 12.1 Hz, H-9), instead of the double bond in 1. The chemical shifts of C-8 (\delta 62.2; d) and C-9 (\delta 59.7; d) in the ¹³C NMR spectrum of 2 also supported the presence of an epoxide between C-8 and C-9. The relative stereochemistry of all chiral centers was determined by NOE experiments (Figure 1). NOEs from H-4a to H-1 α (δ_H 3.94, 1.4%) and to H-13 (11.6%), as well as an NOE from H-11a to H-1 β (δ_H 4.16, 3.8%) were observed. This suggested that H-4a and H-1α were on the same face of the ring and H-11a and H-1β were on the opposite face to H-4a, although an NOE between H-4a and H-11a (1.6%) was detected. The major conformer of the 9-membered ring was determined by the observation of NOEs between H-4a and H-10α (δ_H 2.97, 13%), between H-11a and H- 5β (δ_H 1.74, 1.6%), H-6 β (ca δ_H 1.9, 1.9%), and H-19 (δ_H 5.10, 2.0%), and between H-8 and H-18 (3.7%). The stereochemistry of the epoxide was established to be α from the value of the coupling constant between H-9 and H-10 α (J=12.1 Hz). The large coupling constant suggested that H-9 was axial to H-10 α , implying that the epoxide was in the α -configuration. If the epoxide is β and the torsion angel between H-9 and H-10 β is below 120 degrees, the value of the coupling constant ($J_{9,106}$) would be expected to be much smaller. Therefore, compound 2 is 8,9-α-epoxy xeniatine A. It is noteworthy that the major conformation of 2 was considerably different from that of 1 on the basis of NOE experiments as depicted in Figure 1. In particular, NOE enhancements of H-8 and H-9 but not H-10 was obtained when H-4a in 1 was irradiated.

Table 1. ¹³ C NMR spectral data of 1-9.									
C	1	2	3	4	5	6	7	8	9
1	68.8	70.6	68.9	68.9	69.9	69.9	64.0	64.0	64.0
3	170.5	169.9	168.4	168.4	64.7	65.5	96.2	96.4	96.3
4	131.5	142.9	130.9	128.6	87.3	87.8	148.5	148.6	148.5
4 a	36.1	35.3	43.9	42.9	50.3	50.1	38.2	38.4	38.1
5	33.6	32.1	32.8	32.8	23.6	23.3	24.2	24.1	24.3
6	38.4	33.2	38.5	38.6	39.2	38.5	36.5	36.6	36.6
7	73.5	71.4	73.4	73.4	73.9	74.8	76.0	76.0	76.1
8	137.5	62.2	¶137.8	137.9	137.1	134.2	133.8	134.0	133.8
9	127.9	59.7	127.7	127.8	129.0	128.3	130.9	130.7	131.0
10	37.6	33.7	37.1	37.0	35.4	32.8	30.9	31.2	30.8
11	144.7	131.4	144.6	144.8	136.0	135.6	137.9	135.7	138.0
11 a	42.7	44.9	42.8	43.9	49.4	50.1	51.8	51.5	51.8
1 2	137.7	139.6	¶138.3	139.7	124.6	124.4	120.8	121.5	*123.0
13	120.6	122.4	122.6	123.7	126.7	127.6	123.0	124.0	*123.5
14	150.1	149.8	148.3	149.8	132.1	130.0	142.8	143.5	140.3
15	71.2	71.3	70.9	31.5	146.3	146.3	70.9	*33.0	75.1
16	*29.3	*29.6	*29.3	22.0	26.0	25.8	*29.8	22.4	26.0
17	*30.0	*29.9	*29.6	22.0	18.4	18.2	*29.9	22.4	26.0
18	33.0	32.1	32.8	32.8	32.9	33.4	33.2	*31.5	33.2
19	111.8	118.0	111.9	111.8	112.4	113.6	115.2	114.9	115.2
3-Me							54.6	54.6	54.1
15-Me									50.6
ı.									

^{*, ¶} These values may be interchangeable in any vertical column.

Figure 1. NOEs (%) observed for 1, 2, 3, and 6. R=side chain.

Isoxeniatine A 3, $C_{20}H_{28}O_4$, was an isomer of 1 with respect to the geometry of the 4,12 double bond. Comparison of the 1H NMR spectrum of 3 with that of 1 showed the major difference for the resonance due to H-13 (δ 6.91; dd, J=11.0 and 14.4 Hz) being the most lowfield proton. This suggested that H-13 was close to the carbonyl function in the lactone group. The chemical shift of H-13 and an NOE between H-4a and H-12 (δ _H 6.32, d, J=11.0 Hz, 11.5%) suggested Z-configuration of the 4,12 double bond as opposed to the E-configuration for 1.3 The major conformer regarding the 9-membered ring was concluded to be virtually the same as that of 1 on the basis of the results of the NOE experiments (Figure 1). Thus, the stereochemistry of the hydroxyl group at C-7 was determined to be α from an NOE of H-7 to H-18 (3.0%). Therefore, isoxeniatine A (3) was 4,12(Z)-xeniatine A.

Isoxeniatine B 4 was isolated as an oil with a molecular formula $C_{20}H_{28}O_3$, which had one less oxygen than that of 3. The ¹H NMR spectrum was similar to that of 3, except for resonances due to the side chain at C-4. Resonances due to methyl groups at C-16 and C-17 were observed as doublets (δ 1.02; 3H each, d, J=6.6 Hz). H-15 (δ 2.37-2.47; overlapped by H-6 signals) was coupled to H-14 (δ 5.91; 1H, dd, J=7.0 and 15.4 Hz), which in turn was coupled to H-13 (δ 6.76, 1H, ddd, J=1.3, 11.0, and 15.4 Hz). The latter proton was further coupled to H-12 (δ 6.30; 1H, d, J=11.0 Hz). The above results suggested that the C-15 hydroxyl group in 3 was replaced by hydrogen. E-stereochemistry of the 13,14-double bond was established by the value of the coupling constants between H-13 and H-14 (J=15.0 Hz). Thus, isoxeniatine B (4) was 15-dehydroxyisoxeniatine A.

Xeniaether B (6), $C_{20}H_{30}O_3$, was isomeric with 5. The ¹H NMR spectrum was almost identical with that of 5. However the resonance due to H-4a (δ 3.15; 1H, dt, J=5.9 and 9.3 Hz) shifted to downfield by 0.36 ppm compared to that of 5, suggesting that 5 and 6 were stereoisomers at C-4. The stereochemistry of the hydroxymethyl at C-4 was determined by NOE experiments. Irradiation of H-4a resulted in enhancements of one of C-3 methylene protons (δ_H 3.53; 1H, d, J=12.1 Hz), as well as H-1α (δ_H 3.66; 1H, t, J=9.3 Hz, 2.1%) and H-10α (δ_H 3.42; 1H, dd, J=9.5 and 13.1 Hz, 7.3%), thus confirming that the hydroxymethyl group was α in configuration. As the major conformer inferred from the result of the NOE experiments was basically the same as that of 5, an NOE between H-18 and H-8 (2.0%) suggested the β-configuration of the methyl group at C-7. Xeniaethers A (4) and B (5) are the first example of xenia diterpenoids containing a 9-membered monocarbocyclic skeleton fused to a tetrahydrofuran.

The 13 C NMR spectrum of compound 7, oil, $C_{21}H_{32}O_4$, was similar to that of 3, except for resonances due to an acetal carbon at δ 96.2 (d) instead of the lactone carbonyl at C-3 in 3. In the ^{1}H NMR spectrum, additional resonances assigned to an acetal proton (δ 5.44; s) and methoxyl protons (δ 3.42; s) were observed. The stereochemistry of the acetal proton was deduced as 3 β from the observation of a strong NOE of the acetal proton to H-13 (δ 6.51; 1H, dd, J=11.0 and 15.0 Hz, 22.1%). Therefore, the structure of 7 was as shown.

The molecular formula of 8, $C_{21}H_{32}O_3$, had one less oxygen than 7. The ¹H NMR spectrum was similar to that of 7, except for resonances due to a side chain moiety. The signal patters of the resonances due to the side chain moiety were almost identical with those of 4: δ 1.02 (6H, d, J=6.6 Hz, H-15 and H-16), 5.72 (1H, dd, J=7.5 and 14.7 Hz, H-14), 5.92 (1H, br d, J=9.2 Hz, H-12), and 6.25 (1H, dd, J=11.0 and 14.7 Hz, H-13). Thus, compound 8 was a 15-deoxy derivative of 7.

The ^{1}H NMR spectrum of compound 9, $C_{22}H_{34}O_{4}$, was similar to that of 7, except for resonances due to additional methoxyl protons (δ 3.19; 3H, s). The location of the methoxyl group was determined to be 15 from

the downfield chemical shift of C-15 (δ 75.1) by 4.2 ppm in the 13 C NMR spectrum compared to that of 7. Therefore compound 9 was a 15-methoxy derivative of 7.

A series of the three compounds 7-9 possessing an acetal moiety with a methoxyl group would be artifacts which were formed by the extraction and/or isolation procedures.

The biosynthesis of xenicins and xeniolides has been explained as starting from an intermediate of dialdehyde 12 or a closely related form.^{2, 4} The ocurrence of 5 and 6 suggested that a diol like 10 containing a 1,3 -dihydroxymethyl group might be a common precursor of xenicins 13, xeniolactols 15, and xeniolides 1-4. Namely, the diol is oxidized to afford xeniolides 1-4 via hydroxy acids 14 or the lactols 15 that are derived from hydroxyaldehydes 11. The lactols also gives methoxyacetals 7-9. The possible biogenetic route from the diol 10 to compounds 1-9 and 11-15 is shown in Figure 2.

Figure 2. Possible biogenetic pathway of 1-15.

EXPERIMENTAL

UV and IR spectra were recorded on Shimadzu IR-408 and UV-210, respectively. Optical rotations were measured on a JASCO J-20A spectropolarimeter. NMR spectra were recorded with a JEOL JNM-GX 400 spectrometer. Mass spectra were obtained with a JEOL JNM D300 spectrometer at 70 eV. A Rigaku AFC5R diffractometer was used in the X-ray work.

Extraction and Isolation. Specimens of Xenia sp. were collected at depth of -2 m at Bonotsu, Kagoshima prefecture. The reference sample (collection #68) was deposited in Wakayama Prefectural Museum of Natural History and identified by Dr. Y. Imahara. The organisms (wet weight: 4kg) were chopped into small pieces and extracted with CH₃OH immediately after collection. The CH₃OH was suspended in H₂O and extracted with CH₂Cl₂. The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and evaporated to dryness. The CH₂Cl₂ extract (7g) was absorbed on silica gel and subjected to chromatography on silica gel packed in hexane, fractions (100 ml) being collected as follows: 1-2 (CH₂Cl₂-hexane, 1:1), 3-8 (CH₂Cl₂-hexane, 5:1), 9-11 (CH₂Cl₂), 12-21 (CH₃OH-CH₂Cl₂, 3:97), 23-26 (CH₃OH-CH₂Cl₂, 1:4), and 27-31 (CH₃OH). Fractions 12-21 were again chromatographed on silica gel using CH₂Cl₂ with CH₃OH increasing proportion of CH₃OH to elute the column. Elution with CH₃OH-CH₂Cl₂ (1:99 to 3:97) followed by reversed-phase C₁₈ chromatography (ODS-HPLC) and elution with CH₃OH-H₂O (17:3 to 1:1) gave 2 (10 mg), 4 (21 mg), and 6 (11 mg). The fraction eluted with CH₃OH-CH₂Cl₂ (3:97 to 1:19) was purified by silica gel chromatography with hexane-ether (1:4) to afford a crude diterpenoid fraction. The crude diterpenoid fraction was further applied to silica gel chromatography with CH₃OH-CH₂Cl₂ (1:99 to 1:49) followed by reversed phase chromatography with CH₃OH-H₂O (17:3 to 1:1), giving 1 (18 mg), 3 (3.0 mg), 5 (59 mg), 6 (2.5 mg), 7 (20 mg), and 9 (3.0 mg). Spectral and physical data of xeniatine-A 1 and xeniaether-A 4 were recorded in ref. 3.

Xeniatine A epoxide (2). Oil, $[\alpha]_{2}^{37}$ -16.3° (c 0.07, CH₃OH); UV (CH₃OH) λmax 271 nm (ε 16400); IR (film) vmax 3450, 1710, 1635, 1590, 990, and 910 cm⁻¹; ¹H NMR (CDCl₃) δ 1.38 (6H, s, H-16 and H-17), 1.42 (3H, s, H-18), ca1.66 (1H, m, H-6β), 1.74 (1H, tq, J=2.9 and 12.4 Hz, H-5β), ca 1.9 (1H, m, H-5α), 2.07 (1H, ddd, J=3.3, 12.1, and 15.4 Hz, H-6α), 2.70 (1H, dt, J=3.5 and 10.6 Hz, H-11a), 2.84 (1H, d, J=3.5 Hz, H-8), 2.84 (1H, dd, J=3.5 and 12.1 Hz, H-10β), 2.97 (1H, t, J=12.1 Hz, H-10α), 3.04 (1H, dt, J=3.5 and 12.1 Hz, H-9), 3.75 (1H, m, H-4a), 3.94 (1H, t, J=10.6 Hz, H-1α), 4.16 (1H, dd, J=3.6 and 10.6 Hz, H-1β), 5.10 and 5.27 (1H each, br s, H-11), 6.21 (1H, d, J=14.8 Hz, H-14), 6.99 (1H, dd, J=11.5 and 14.8 Hz, H-13), 7.08 (1H, dd, J=1.7 and 11.5 Hz, H-12); HREIms m/z 348.1937 (M⁺, calcd for C₂₀H₂₈O₅, 348.1937).

Isoxeniatine A (3). Amorphor, $[\alpha]_1^{\frac{17}{2}} + 300.0^{\circ}$ (c 0.13, CH₃OH); UV (CH₃OH) λmax 253 nm (ε 7900); IR (film) νmax 3400, 1720, 1635, 1610, 985, and 920 cm⁻¹; 1 H NMR (CDCl₃) δ 1.35 and 1.36 (3H each, s, H-16 and H-17), 1.37 (3H, s, H-15), ca 1.45 (1H, m, H-5β), 1.80 (1H, br d, J=7.3 and 15.9 Hz, H-6β), 1.92-1.99 (1H, m, H-5α), 2.46 (1H, ddd, J=2.2, 12.1, and 15.9 Hz, H-6α), 2.65 (1H, dt, J=5.1 and 11.0 Hz, H-11a), 2.91 (1H, dd, J=7.7 and 12.1 Hz, H-10α), 3.07 (1H, br t, J=12.2 Hz, H-10β), 3.37 (1H, br d dt, J=5.5 and 11.0 Hz, H-4a), 4.40 (1H, t, J=11.0 Hz, H-1α), 4.24 (1H, dd, J=5.1 and 11.0 Hz, H-1β), 4.64 and 4.91 (1H each, s, H-19), 5.37 (1H, dt, J=7.7 and 12.2 Hz, H-9), 5.63 (1H, bt d, J=12.2 Hz, H-8), 6.05 (1H, d, J=14.4 Hz, H-14), 6.32 (1H, d, J=11.0 Hz, H-12), and 6.91 (1H, dd, J=11.0 and 14.4 Hz, H-13); HREIms m/z 332.1972(M⁺, calcd for C₂₀H₂₈O₄, 332.1987).

Isoxeniatine B (4). Oil, $[\alpha]_0^{15}$ +433.0° (c 0.007, CH₃OH); UV (CH₃OH) λmax 264 nm (ε 20300); IR (film) νmax 3500, 1730, 1665, 1630, and 990 cm⁻¹; ¹H NMR (CDCl₃) δ 1.02 (6H, d, J=6.6 Hz, H-16 and H-17), 1.37 (3H, s, H-18), ca 1.46 (1H, m, H-5β), 1.79 (1H, br dd, J=7.0 and 15.4 Hz, H-6β), 1.92-1.99 (1H, m, H-5α), 2.37-2.47 (2H, m, H-6β and H-15), 2.65 (1H, dt, J=5.6 and 11.4 Hz, H-11a), 2.93 (1H, dd, J=7.7 and 11.4 Hz, H-10α), 3.05 (1H, br t, J=11.4 Hz, H-10β), 3.34 (1H, dt, J=5.6 and 11.4 Hz, H-4a), 4.04 (1H, t, J=11.4 Hz, H-1α), 4.22 (1H, dd, J=5.3 and 11.4 Hz, H-1β), 4.64 and 4.91 (1H each, s, H-19), 5.38 (1H, dt, J=7.7 and 11.4 Hz, H-9), 5.63 (1H, br d, J=11.4 Hz, H-8), 5.91 (1H, dd, J=7.0 and 15.4 Hz, H-14), 6.30 (1H, d, J=11.0 Hz, H-12), and 6.76 (1H, ddd, J=1.3, 11.0, and 15.4 Hz, H-13); HREIms m/z 316.2029 (M+, calcd for C₂₀H₂₈O₃, 316.2037).

Xeniaether B (6). Oil, $[\alpha]_0^{3^2}$ -75.0° (c 0.09, CH₃OH); UV (CH₃OH) λmax 241nm (ε 12300); IR (film) vmax 3450, 1660, 1640, and 990 cm⁻¹; ¹H NMR (CDCl₃) δ 1.35 (3H, s, H-18), ca 1.51 (1H, m, H-5β), ca 1.6 (1H, m, H-5α), 1.79 (6H, s, H-16 and H-17), ca 1.8 (1H, m, H-6α)2.73 (1H, dd, J=8.4 and 13.1 Hz, H-10β), 2.79 (1H, t-like, J=9.3 Hz, H-11a), 3.15 (1H, dt, J=5.9 and 9.3 Hz, H-4a), 3.42 (1H, dd, J=9.5 and 13.1 Hz, H-10α), 3.50 and 3.53 (2H, AB, J=12.1 Hz, H-3), 3.66 (1H, t, J=9.3 Hz, H-1α), 3.94 (1H, t, J=9.3 Hz, H-1β), 4.92 and 4.94 (1H each, s, H-19), 5.31 (1H, d, J=12.1 Hz, H-8), 5.47 (1H, d, J=15.2 Hz, H-12), 5.51-5.53 (1H, obscured by H-12, H-9; δ 5.37, ddd, J=8.4, 9.5, and 12.1 Hz in C₆D₆), 5.86 (1H, br d, J=11.0 Hz, H-14), and 6.53 (1H, dd, J=11.0 and 15.2 Hz, H-13); HREIms m/z 300.2029 (M⁺-H₂O, calcd for C₂₀H₂₈O₂, 300.20890).

Compound 7. Oil, $[\alpha]_0^{5^{\circ}}$ -93.0° (c 0.08, CH₃OH); UV (CH₃OH) λ max 238nm (ϵ 20000);; IR (film) vmax 3450, 1635 and 980 cm⁻¹; ¹H NMR (CDCl₃) δ 1.33 (3H, s, H-18), 1.35 (6H, s, H-16 and H-17), 2.41 (1H, dt, J=4.8 and 11.6 Hz, H-11a), 2.53 (1H, dd, J=8.6 and 13.0 Hz, H-10 α), 3.42 (3H, s, 1 α -OMe), 3.46 (1H, overlapped, H-1 α), ca 3.5 (2H, overlapped, H-1 α and H-10 β), 3.81 (1H, t, J=11.6 Hz, H-1 β), 4.95 and 4.98 (1H each, s, H-19), 5.27 (1H, d, J=11.7 Hz, H-8), 5.44 (1H, s, H-3 β), 5.67-5.74 (1H, m, H-9), 5.89 (1H, d, J=15.2 Hz, H-14), 5.95 (1H, br d, J=11.0 Hz, H-12), and 6.51 (1H, dd, J=11.0 and 15.2 Hz, H-13); EIms m/z 330 (M+).

Compound 8. Oil, $|\alpha|_0^{15}$ -76.3° (c 0.07. CH₃OH); UV (CH₃OH) λ max 239nm (ϵ 12800); IR (film) vmax 3500 and 1635 cm⁻¹; ¹H NMR (CDCl₃) δ 1.02 (6H, d, J=6.6 Hz, H-16 and H-17), 1.33 (3H, s, H-18), 2.41 (2H, overlapped, H-4a and H-11a), 2.52 (1H, dd, J=8.6 and 13.0 Hz, H-10 α), 3.39-3.50 (2H, m, H-1 α and H-10 β), 3.42 (3H, s, 1 α -OMe), 3.82 (1H, t, J=11.4 Hz, H-1 β), 4.94 and 4.97 (1H each, s, H-19), 5.28 (1H, d, J=12.1 Hz, H-8), 5.41 (1H, s, H-3 β), 5.66-5.74 (1H, obscured by H-14, H-9), 5.72 (1H, dd, J=7.5 and 14.7 Hz, H-14), 5.92 (1H, br d, J=9.2 Hz, H-12), and 6.25 (1H, dd, J=11.0 and 14.7 Hz, H-13); HREIms m/z 300.2074 (M+-CH₃OH, calcd for C₂₀H₂₈O₂, 300.2087)

Compound 9. Oil, $[\alpha]_1^{3^{-}}$ -82.8° (c 0.10, CH₃OH); UV (CH₃OH) λ max 240nm (ϵ 14200); IR (film) vmax 3500, 1640, and 990 cm⁻¹; ¹H NMR (CDCl₃) δ 1.32 (6H, s, H-15 and H-16), 1.37 (3H, s, H-18), 2.45 (1H, dt, J=4.8 and 11.7 Hz, H-11a), 2.56 (1H, dd, J=8.8 and 12.8 Hz, H-10 α), 3.19 (3H, s, 15-OMe), 3.46 (3H, s, 3 α -OMe), 3.45-3.56 (2H, m, H-1 α and H-10 α), 3.85 (1H, t, J=11.4 Hz, H-1 β), 4.99 and 5.01 (1H each, s, H-19), 5.31 (1H, d, J=12.1 Hz, H-8), 5.46 (1H, s, H-3 β), 5.77 (1H, m, H-9), 5.77 (1H, d, J=14.3 Hz, H-14), 6.00 (1H, br d, J=10.6 Hz, H-12), 6.43 (1H, dd, J=10.6 and 15.4 Hz, H-13); HREIms m/z 344 (M⁺-H₂O, 344.2375, calcd for C₂₂H₃₂O₃, 344.2352).

11118 T. IWAGAWA et al.

Acknowledgments: We are grateful to Dr. Y. Imahara (Wakayama Prefectural Museum of Natural History) for the identification of the sample and to Dr. S. Moore (Massey University) for reading the manuscript.

REFERENCES AND NOTES

- 1. New xenia diterpenoids from *Xenia* sp. collected at Bonotsu, Kagoshima prefecture. 2. Part 1. ref. 3.
- 2. Kashman, Y; Groweiss, A. J. Org Chem., 1980, 45, 3814.
- 3. Iwagawa, T; Amano, Y; Hase, T; Shiro, M. Chem. Lettts, 1985, 695.
- 4. Groweiss, A; Kashman, Y. Tetrahedron, 1983, 39, 3385.

(Received in Japan 21 July 1995; accepted 21 August 1995)